An Examination of Model Track Forecast Errors for Hurricane Ike (2008) in the Gulf of Mexico
نویسندگان
چکیده
Sources of dynamical model track error for Hurricane Ike (2008) in the Gulf of Mexico are examined. Deterministic and ensemble model output are compared against National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) analyses to identify potential critical features associated with the motion of Ike and its eventual landfall along the upper Texas coast. Several potential critical features were identified, including the subtropical ridge north of Ike and several synoptic-scale short-wave troughs and ridges over central and western North America, and Tropical Storm Lowell in the eastern North Pacific. Using the NCEP Gridpoint Statistical Interpolation (GSI) data assimilation scheme, the operational GSI analysis from the 0000 UTC 9 September 2008 cycle was modified by perturbing each of these features individually, and then integrating the GFS model using the perturbed initial state. The track of Ike from each of the perturbed runs was compared to the operational GFS and it was found that the greatest improvements to the track forecast were associated with weakening the subtropical ridge north of Ike and strengthening a midlevel short-wave trough over California. A GFS run beginning with an analysis where both of these features were perturbed produced a greater track improvement than either did individually. The results suggest that multiple sources of error exist in the initial states of the operational models, and that the correction of these errors in conjunction with reliable ensemble forecasts would lead to improved forecasts of tropical cyclone tracks and their accompanying uncertainty.
منابع مشابه
Effects of track and threat information on judgments of hurricane strike probability.
Although evacuation is one of the best strategies for protecting citizens from hurricane threat, the ways that local elected officials use hurricane data in deciding whether to issue hurricane evacuation orders is not well understood. To begin to address this problem, we examined the effects of hurricane track and intensity information in a laboratory setting where participants judged the proba...
متن کاملAssessment of a Parametric Hurricane Surface Wind Model for Tropical Cyclones in the Gulf of Mexico
Tropical cyclones, which generate storm surges, wind waves, and flooding at landfall, are a major threat to human life and property in coastal regions throughout the world. The Unit‐ ed States, the northern Gulf of Mexico, and in particular the Louisiana Gulf coast, are very susceptible to the impacts of frequent tropical storms and hurricanes due to its tropical/ subtropical location and uniqu...
متن کاملThe Impact of Dropwindsonde Data on GFDL Hurricane Model Forecasts Using Global Analyses
The National Centers for Environmental Prediction (NCEP) and the Hurricane Research Division (HRD) of NOAA have collaborated to postprocess Omega dropwindsonde (ODW) data into the NCEP operational global analysis system for a series of 14 cases of Atlantic hurricanes (or tropical storms) from 1982 to 1989. Objective analyses were constructed with and without ingested ODW data by the NCEP operat...
متن کاملAssimilation of coastal Doppler radar data with the ARPS 3DVAR and cloud analysis for the prediction of Hurricane Ike (2008)
[1] The impact of radar data on the analysis and prediction of the structure, intensity, and track of landfalling Hurricane Ike (2008), at a cloud-resolving resolution, is examined. Radial velocity (Vr) and reflectivity (Z) data from coastal radars are assimilated over a 6-h period before Ike landfall, using the ARPS 3DVAR and cloud analysis package through 30-min assimilation cycles. Eighteen-...
متن کاملEnvironmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction
Katrina (a tropical cyclone/hurricane) began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011